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" ABSTRACT

Given a system of linear equations with more eguations than unknowns, we
gseek to determine that vector of unknowns which minimizes the norm of the
residual of the system'in the uniform sense. A method isvpresented which ob-
tains this solution after a finite number of trial solutions have been examined
in a sequence in which the residual norm decreases with each successive step.
The implementation of the method exploits efficient matrix decomposition up-
dating schemes resultihg in reduced computation times when compared with a

presently popular method.




1. INTRODUCTION

Suppose we are given an mxn real matrix A (withm > n), a real m-vector b

and we seek to determine a real n-vector x* such that

[ lax* - off < ||ax - b]]

d

is termed a "uniform" ("Chebychef", "Minimax", "L_") solution to the overdetermined

for all real n-vectors x (where ] indicates the uniform norm). Such an x¥
system denoted by "Ax = b".

That such a solution x* exists is easy to show. We first notice that
||y - v|| is & continuous function of y = Ax. The set {yly = ax, ||y - vl| < ||v]]}
is a compact subset of the (at most) n dimensional subspace {Ax, x € R} of R',
hence contains a minimum y* of l]y - b]l and this minimum is obviously a minimum
over the entire subspace. By selecting an x* such that Ax* = y*, we have
||ax* - b}} < ||ax - b|| for all x € R".

If furthermore, it is assumed that every nxn submatrix of A is non-singular
then there exists a unique solution x*. This assumption on A is called the

Haar condition; should it not hold, x* may still be unique for a fixed b.

Henceforth it will be assumed that A satisfies the Haar condition.

A proof that the Haar condition does guarantee a unique solution may be
found in various approximation theory texts (e.g., Cheney [T]). The algorithm
presented here provides a constructive proof. This method begins with any
initiel x and proceeds to determine a finite sequence of x's feducing the
quantity IIAx - b|| at each step, until x* is reached where ||Ax - b|| can no
longer be reduced.

Section 2 includes some initiasl definitions and discussion as well as a




geometrical interpretation of the descent algorithm. The algorithm is
analytically presented in Section 3. Section 4 discusses the actual efficient
implementation of the algorithm. Computational experience and comparison
with another technique is mentioned in Section 5. In Section 6, the modifica-
tions to the algorithm allowing the addition of linear equality and inequality

constraints are briefly discussed.




2. _THE RESIDUAL AND THE GEOMETRY OF THE ALGORITHM

For any given n-vector x, the residual Ax - b will be denoted by r(x)
(and occasionally simply by r). The quantity ||r(x)|| we seek to minimize
is the maximum of the magnitudes of the m components of r(x). We may par-
tition the set of all residuals, R = {r(x)|x € R®}, into two distinct classes
according to the number of components of the vector which are maximal in
magnitude:

R, = {r(x)|n or less of the components of r(x) are equal to ||r(x)||

in magnitude}
R, = {r(x)lh + 1 or more of the components of r(x) are equal to

[lr(x)|| in magnitude}
If we select a particular x € Rn and assume all such selections are equally
likely, then with probability one the éorresponding residual r(x) lies in R, .
In the descent algoritim, if we begin with an initial trial solution whose
residual lies in Rl’ and thus has k (f n) components of maximal magnitude,
we shall move to a second trial solution with k + 1 or more residual components
of maximal magnitude. Subsequently, at each step the number of such components
of the residual must increase by at least one, with the result that alfter at
most n steps an x has been determined whose residual belongs to R2. All trial
solutions subsequent to this have residuals in R2, although the number of
maximal magnitude components does not necessarily increase from step to step.

At each step the quantity ||r(x)|| decreases; hence the name "descent
method". The iteration continues until a point is reached at which no descent
is possible, implying that the solution has been reached.

Graphically we may consider the subset of R'xR defined by {(x,6)|6 > ||r(x)]],

X € Rn}. This set, being the intersection of the 2m half-spaces




{(x,0)]6

v

n
&, X -b;3Xx ER } i=1,...,m

and {(x,0)]8 -(ai X - bi); xeRY i=1,...,m

tv

(where a, denotes the ith row of A and b, the ith element of b), is a convex

i i

polytope. Points on its surface must have the form (x, ||r(x)||) and it is
clear that if we introduce the notion of "down" corresponding to decrease in
the last component, that the lowest point on the polytope is precisely

(x*, ||r(x*)]||). We may think graphically that the solution to the problem
is equivalent to determination of the minimal point of the polytope. The
descent algorithm to be presented produces a finite sequence of points on the
surface of the polytope which descend to this minimal point.

Using the nomenclature of Berge [6, page 169], we define a "privileged
line" of a polytope P through a point a, as a line whose intersection with P
contains a on the interior. If Va denotes the linear manifold formed by the
privileged lines of P through &, then the intersection of Va and P is a "face"
and the "order" of the face is the dimension of V.. Faces of order zero are
vertices (thus vertices are exactly the extreme points of the polytope) and
clearly every point on the surface of the given polytope is contained in a
face of order at most n. There is one face of order n + 1: the interior of

the polytope. Since allAfaces of lower order are intersections of a finite

number of half-spaces the total number of faces 1s finite. This fact pro-

vides the basis for the proof of finite termination of the algorithm: each descent

ends at the minimal point bf a face, hence only finitely many descents are po;sible.




3. THE DESCENT ALGORITHM

For a given vector x, the residual r(x) must have some k of its components
of maximal magnitude (where 1 <k< m) and m - k strictly submaximal. Let M(x)
be the set of those k indices corresponding to maximal components. Further,

+

let M(x) denote the same set of indices except given the sign of the correspond-
+
ing residual component: i.e., if 1 € M(x), then i € M(x) if ri(x) > 0 and

+
-1 ¢ M(x) if ri(x) < 0.

The following lemma end theorem provide a correspondence between polytope
+

faces and the sets M(x).
LEMMA 1: A line L = {{(x + Ax, ||r(x)]| + A2)|X € R} is & privileged line of
the polytope through (x, ||r(x)|]) if and only if

8y Ax = sgn ri(x) ° 2z

for all i € M(x).

PROOF: For L to be a privileged line through (x, ||r(x)||) we must have
Iai(x + AAx) - bil < | le(x)|] + Az

for 1 =1,..., m and all A in some neighborhood of 0. Thus for the same values

of i1 and A we have
sgn ri(x) . (aix + da, Mx - bi) < |lx@x)|] + Az.
For 1 € M(x) we have

sgn ri(x) . (aix - bi) = ||x(x)]],



and thus it follows that
sgn ri(x) . Aai Ax < Az.
This holds for positive and negative values of A, resulting in
sgn ri(x) 8y Mx = 2z

for i € M(x).

Now suppose &, Ax = sgn ri(x) * z holds for all i € M(x). Then
sgn r,(x) * (a, x + Ao, Ax - b,) = Hr(x)|] + rz;
thus
]ai(x + AMx) - bil < e + 22
for A in a neighborhood of 0. For i ¢ M(x)
eyl < Ll
thus
Iai(x + Ax) - bil < |ri(x)l + |A] - Iai &x| < |r(x)|]| + A2
for A in some neighborhood of 0. Combining these we have
|ai(x + Ax) - bil < e[| + 2z

for 1 =1,...,m and A in some neighborhood of O which is equivalent to L

being & privileged line of the polytope. | |




THEOREM 1: The two faces generated by the privileged lineé through (xl,
||r(xl)|[) and (x,, ||r(x2)||) respectively, are equal if and only if

t -
M (xl) =M (x2).

PROOF: We may assume Xq # x Suppose first that the two faces are the

5"
same. The line passing through (xl, ||r(xl)||) and (x2, Ilr(xz)ll) must

then be a privileged line at both points. From the lemma

sgn ri(xl) ‘8 Ax llr(xl)‘| - ||r(x2)||

for i € M(xl) and

sgn r,(x,) * a, &x Ilr(xl)ll - ||r(x2)||

. + +
for i € M(xz). Suppose M’(xl) # M’(x2). Thus, without loss of generality
+ +
we may assume there is an i* e M (xl) ~ M (x2), and either Irli*|(x2)| <

||r(x2)|| or sgn rli*l(x2) # sgn r|i*‘(x2).

We have
[lrGe) 1] = 1lrx,)ll sen 701 (x) 2 gu%y = 580 7|01 (5) &)a
= g 730 0xy) * (8| = Bgu)) - %88 g ()8 0%y - B )
= eI - sen rqui(xg) = 5uixy)
Thus
HrGe) || = sen zy g (x)) « xga) (xp)

which is a contradiction whether lr|1*|(x2)l < ||r(x2)|| or sgn rli*|(x2)

+
Now suppose that Mi(xl) = M'(xe). From the lemma, we may see that the line

T



through (xl, ||r(xl)|l) and (x2, ||r(x2)|l) is a privileged line at both
points. The faces generated by the privileged lines at each of the points
must include the opposife point and thus the faces must coincide. |I

Using Theorem 1, we see that we may bound the number of faces by bounding
the number of possible sets Mi. This bound is clearly ? (i) 2k = 3m -1; in

k=1
practice however we find the number of faces to be on the order of m.




3. _THE DESCENT ALGORITHM

For a given vector x, we shall define a direction of descent from x as
any n-vector Ax for which ||r(x + Ax)|| < ||r(x)|| for all sufficiently small,
but positive, values of A. The following theorem is the basis for determina-
tion of directions of descent.
THEOREM 2: If the system of inequalities

sgn(ri(x)) i Ax < 0O

for all i € M(x), has a solution, then Ax is also a direction of descent from

x. If no solution exists then no descent is possible and x = x*, the minimizer

of ||r(x)]].
PROOF: Suppose first that x # x*. We must prove that a solution to the
system of linear inequalities
<
sgn(ri(x)) a; Mx <0

for i € M(x), exists.

Since ||r(x*)]] < ||r(x)|]|, we have for 1 e M(x),
sgn(r, (x))(ax* - b,) < [|r(x)]]

< Hr)|] = sealr; (x))(a;x - ).

Subtracting we obtain
sgn(r, (x)) a,(x* - x) < 0;

thus, x* - x always satisfies the inequalities. Alternatively suppose there



exists a solution Ax so that for i € M(x),
sgn(ri(x)) 8, Ax < 0.
For sufficiently small, positive A, we have
= < =
lri(x + Alx) | Iri(x)| + A sgn(ri(x)) 8 Ax |ri(x)l [r(x)]]

for 1 € M(x). For i ¢ M(x) lri(x)l < [fr(x)||. Thus for sufficiently small
positive A (in fact for
G| = e (o))
A<
la, Ax|
i

Iri(x + Mx)| < ||r(x)]|]. Combining the results for i € M(x) we can say for
A sufficiently small, positive and independent of i

50+ )| < e
thus

[r(x + ax) |} < e

and Ax is a direction of descent. W

If we have determined a direction of descent Ax from x, we are guaranteed
some positive A so that the step from x to x + AlAx results in a decrease in
the residual norm. Since Ax mﬁst satisfy the inequalities of Theorem 2, we

may examine the proof to see that A satisfying

v, (0 (] = I, (0]
A = min{ min Sk min
ieM(x) &4 igM(x) la, Ax{
aiAx#O +

suffices. We could consider an algorithm where at each trial solution x, the

direction of descent Ax was determined as some solution to the linear inequalities,

10
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Lhen ng the A selected Trom the whbove

i using the by x + AAx, and the
process repeats. With this algorithm we may guarantee that Ilr(x)ll decreases
at each step but there is no guarantee of finite convergence (i.e., determina-
tion of the solution in a finite number of steps) or even any convergence at
all. It is possible for the sequence of solutions from this algorithm to have
a set of accumulation points, none of which is x*.

To produce an algorithm with finite convergence, we must be more careful

about the selection of Ax and A.

The following theorem provides such a careful selection.

THEOREM 3: Suppose for all i € M(x)
Sgn(ri(x)) a; Ax < -l lr(x)}].

Define M'(x) = {i € M(x)ISEn(ri(x)) e, &x = [lr(x)]]|}, and for i ¢ M'(x),

e - senlay &x + 7, () 7, (x)

= b

[e(x) || + sen(a, Ax + r,(x)) &, &x

i

A= min A; and x = x + Alx .
ie{1'}

Then it follows that
i) 0<Ax<1
i1) e ] = @ - V]ir)]]

191) M (x) § M(x)

PROOF: For i) it suffices to show that 0 < A, <1 for all i ¢ M'(x). DNotice
first that since Iri(x)l < el e ] - sgn(a; Ax +r (x)) r,(x) > 0.

Furthermore if equality were to hold we would have

11



[lr(x)]] = Iri(x)l = sgn(ai Ax + ri(x)) ri(x)

which implies that sgn(ai Ax + ri(x)) = sgn(ri(x)) and that i € M(x). By

virtue of i ¢ M'(x), however,
sen(r, (x)) a; fx < - Hr(x)]]| = -sgn(r, (x))(r, (x))
i.e., sen(r (x))(a; &x + r (x)) < 0 and
sena; &x + ri(x))(ai bx + r.(x))
= Ja, &+ r,(x)] <0

which is a contradiction. Henceforth we may assume that the numerator in
the expression for Ai is strictly positive. That the denominator is also

strictly positive follows because for it to be non-positive we would have
- > + .
Hre(x)|| sgn(a, Ax + r,(x)) a, Ax

Since ||r(x)|| > o, sgn(a.:.L MAx + ri(x)) must then be -sgn(ai Ax) which is
equivalent to Iai Ax| < Iri(x)l;thus Iai Ax| < ||r(x)]|| but this contradicts
the above inequality.

Having now shown that Ai > 0 we show Ai < 1. If it were the case that

Ai > 1, we would have
HrGl - sen(a, &x +r,(x)) r, (x)
> |lr(x) || + sgn(a,; Ax + r.(x)) A, &
i.e., 0> ssn(ai Ax + ri(x))(ai Ax + ri(x)) > Iai Ax + ri(x)l

which is a contradiction.

12




Turning to conclusion ii) we shall sghow that for all i

(1 - %) |r(x)}]

|7, ()]

A

and for i e M'(x)

ENETIENCIERS IO

For the first we need recall that Iri(x)l < |]r(x)|| and thus the curve
le, (x + Ax)| for X > 0 is dominated initially by (1 - M]lr(x)]]. For i¢
M!'(x), the first, positive intersection of these curves is exactly at A = Ai,
thus since A S'Ai’ |ri(x + Ax)] < (1= X) J|e(x)]]. For i e M'(x),
ri(x + AAx) = ri(x) + Aai Ax = (1 - A) ri(x). Thus Iri(x + AMx)| = (1 - A)|ri(x)|

= (1 - A)||r(x)]]|. For all 0 < A <1, and in particular for X = X we have
ERCIIERCUERIIIPICIR

For the_third part of the conclusion we need only show that for some i ¢
M'(x), lri(§)| = |]r(£)]| (since it has already been shown that M'(x) C M(x)).
But for some M'(x),)&i = A and as was stated previously Iri(x + Ai Ax)| = (1 - Ai)
Hr(x)||; thus lri(§)| = ||r(£)|!. l'

The descent algorithm can now be described using the construction of

the theorem. Given any point x, the system of inequalities
sgn(r,(x)) s, Mx < - He(x)]] 1 e M(x)

is solved in such a way that the subset M'(x) of indices for which equality
holds, is as large as possible. Notice that if M(x) has n or less indices
that it is possible to have equality for all indices of M{x) (i.e., M'(x) =
M(x)) and from conclusion (iii) of Theorem 3 it follows that M(x) has at
least one more component than M(x). We see that in n or less such steps we

13



determine an x such that M(x) has n+l or more components. This is the initial

phase of the descent. In the second phase more care must be shown in the v
selection of the direction of descent.
We shall show that a vertex of the polytope associated with the problem
can be reached in a finite number of steps, (usually n) and then from one
vertex, another is found also in a finite number of steps (usually one). Using
the fact that the number of vertices is finite, we may conclude that the
"lowest" vertex on the polytope, that one corresponding to the solution, is

located in a finite number of steps.

Lemma 2: If (x, ||r(x)|]) is not a vertex on the polytope then we may solve

sga(v,(x)) a; &x = -[|r(x)]]

A

for all i € M(x) and determine x, as in Theorem 3, such that M(x) # M(x).
Thus (since M(x) may contain at most m elements) eventually a vertex must

be reached by recursively descending in this manner.

PROOF: Since (x, |]r(x)]]) is not a vertex there is at least one privileged
line passing through it. But accordiqg to Lemma 1, this implies a solution
to a; Ax = sgn;vi(x) z for all i € M(x) for some Ax and z, which‘is equivalent
to sgn(vi(x)) a; bx = -||v(x)|] for suitably rescaled Ax and z. |

At a vertex we must have at least n+l indices in M(x). We shall determine
a Ax as before with the set M'(x) containing at least n elements. How this is
done in the case of more than n+l indices in M(x) will not be discussed here,
since this case occurs exceedingly rarely in practice and the techniques are
simple generalizations. The case of exactly n+l will be discussed in detail.

Let k be any element of M(x) and Ax the unique solution to

1L




sgn(v, (x))a; Mx = -|[v(x)]]

for i e M(x) ~ k. 1If Sgn(vk(x)) a, Ax < -{|{r(x)|| then the descent step of
Theorem 3 can be performed without further computation. If sgn(vk(x)) ay Ox

> =} |r(x)|| then let y be the n-vector that expresses sgn(rk(x)) a_as a

linear combination of the vectors sgn(ri(x))ai, i e M(x) ~ k. That y exists

and has no zero component follows from the Haar condition. Since

ssn(rk(x))ak = ieﬁ(x)~k ¥y sgn(ri(x))ai

(where we have assumed an indexing of y corresponding to the indices of M(x)

~ k) if we were to select some J € M(x) ~ k it would follow that

ssn(rj(x))aJ =i€M(§)~J~k(—yilyj) ssn(ri(x))ai

+ 1/y, sen(r, (x)a,.

Thus if now we solve the system

sgn(r {(xY)g E: _ilv( )
e A i\‘“ll i - IO Y s

s

for 1 € M(x) ~ J, we would have-sgn.(rj(x))a.J Ax

= I (-y./y,) sen(r,(x))a, Ax
ieM(x)~j~k T 9 1 i

+ l/YJ Sgn(rk(x))ak Ax

= I (~y. /y ) (=] |e(x)|]| + (l/yj)(-llr(X)Il)
ieM(x)~J~k T

=(1L-85+ yj)/yJ (-] =) ])

15



where [, = % Yy
ieM{x )~k

We would like to determine J so that
ssrl(l‘d(x))aJ Ax < = |r(x)]|]
which is equivalent to
1-8+ > 1
i.e., (1 - S)/yj > 0.

We then select J so that the quantity (1 - S)/yJ is meximized. However,

with a little inspection we can see that 1 - S > 0, so it suffices to maximize
l/y'j (i.e., determine minimum Y, for yJ >0). If1-8¢<0, thus S > 1, notice
that

sgn(rk(x)) a, Mx= Iy

sgn(r,(x))a, Ax
ieM(x) 1 :

i

= s (-||r(x)|]) ¢ -lIr(x)}],
contradicting our assumption that
sgn(rk(x))a.k Ax > - ||r(x)[].

Returning to the determination of j, if all yJ < 0, then x is the solution
to the problem since descent is impossible. If there would be such a direction

of descent v then it would satisfy
0> sgn(ri(x))aiv for i € M(x).

But then

16




0> sgn(r. (x))a. v = & y. sen{r,(x))a. v > 0,
k k 1eM(x )~k i i i

which is a contradiction.

As a result we have shown that either a direction of descent Ax or Ax

may be determined or that the solution has been reached. This is summarized

in the following theorem.

Theorem 4: If (x, |[r(x)]]) is a vertex of the polytope such that the set

M(x) has exactly n+l components and k is an element of M(x) then one of the

following holds

i)

ii)

Letting Ax satisfy

sen(r, (x))a, Mx = -[[r(x)[| 1 eMx) -k
results in

sgn(rk(x))ak Ax < -x(x)|]

so that Ax yields a direction of descent as in Theorem 3 with M(x)
~ kC M'(x).

Letting Ax satisfy
sgn(r (x))a; & = “lr(x)]] ieM(x) ~ k
results in
sgn(ry (x))a, Ax > - [ r(x)|]
so that Ax is not a direction of descent. However letting y satisfy

sgn{r_(x))a,. = I y. sen(r (x))a,
K ieM(x)~k : *

17



and selecting J so that y'j > 0 but y'j f'yi for all yi > 0, then by solving

sgn(ri(x))ai Ax = Hex)]]  ieMx) ~3

results in sgn(rj(x))e.J Ax < -l|r(x)]]| so that Ax yields a direction of
descent as in Theorem 3 with M(x) ~ J C M'(x). If however no yJ >0

then x = x* the solution.

18




. COMPUTATIONAL ASPECYS OF THE ALGORITHM

The primary computation required in the descent algoritim is that of
solving a sequence of square linear systems. If we denote such a system by
By = 4, then it may also be required to solve a system of the form BTw =f
(which is the case when vertices are reached). Furthermore another system
B'y' = d', may need to be solved at the subsequent step, B' differing from
B in only one row. We seek to provide numerically stable methods for solving
these problems.

An obvious approach is to perform an LU factorization of B at each step
and make no use of thé relation between B and B'. Thus we have B = LUP where
L is lower triangular, U is unit upper triangular, and P is a suitable
permutation matrix. This factorization is the result of Gaussian elimination
by columns with partial pivoting. To solve By = d we need only solve the
lower triangular system L§ = d, the upper triangular system U § = §, and then
let y = PT§ . To solve the transposed problem BTw = f we may use the same
factorization: Let w = Pf, solve the lower triangular system UT§'= w, and
finally solve the upper triangular system LTw =W,

We see that the LU factoriz&tioh is useful, but it requires approximately
n3/3 multiplications (and the same number of additions) to determine. An
obvious method for reducing the computation is to notice that the first k-1
steps of the factorization are essentially independent of rows k through n
(and in particular row k). TIf we perform k-1 steps of the factorization, we

have the form BPi = LU, where P, is a permutation matrix and L has the structure

] oo
22 g3
ol B

19




(where Ll is k-1xk-1 lower triangular and 22 is k-1x1 and 23 is n-k+1x1l and

Uk has the structure

(where Ul is k-1xk-1 upper triangular). First notice that if B'Pl‘{T = LiUi

represents the first k-1 steps of factorization of B', then Pk = Pi since
interchanging of columns in the first k-1 steps is based only on elements of
the first k-1 rows, and B and B' are identical in these elements. Notice,

second, that

-1 -1

1 1
- 1 | . 1
= (clU Yuo o+ (02 cl

t
€1

-1 -1
2 2 2 2
ey = (eju® MW"+ (ep -y U U )

(Where ci_represents the first k-1 components of cPi? and cé the remainder),

or in matrix form

Thus, letting 22'= CiU and 23' = Cé - ¢ U U2 we have

Ll 0
| ]
B'prT 2| g2 3
K I

. 1 _k
Since the L', L , Ul, and U2 blocks of Lk and Uk are unaltered through the
remainder of the factorization (as well as the first k-1 columns of Pk) this
information can be read off of the final factors L, U, and P. After solving

t )
for the quantities 22 and 23 the factorization of B' can begin at the kth

20




2

step. We realize a saving of about nk - % ¥” multiplications over beginning
the factorization completely over. The average number of operations performed
is then épproximately n3/6 (if we assume k has equal likelihood of being one
through n). Thus a saving of half the computation may be expected.

This updating procedure is the column-wise decomposition analogy of the
method given in [2] and [3]. As we see the number of operations required to
update is on the order of n3. Another procedure, analagous to that given in
[1] and [5], provides an updated decomposition with an operation count
proportional to ng‘

For this procedure a different factorization is employed. This has the

form L = BY

where L is lower triangular and U is non-singular (but not necessarily upper
triangular). To see that this form is useful for solving the required system,

notice that

Thus by solving Li = d and letting y = U§ we may solve By = d. For the

T

T -
transposed system BTw f, we have UTB w = LTw = U'f, thus by letting w

]

= UTf and solving LTw = w, we obtain w. These solutions require asbout 3n2/2
multiplications compared with n2 required with the usual LU factorization.
The saving in computation is to be gained in the updating of the factorization.
The factorization of the initial B of the sequence of matrices may be
obtained through a simple variant of the columnwise Gaussian elimination
algorithm with partisl pivoting, yielding L= B P U, where P is a permutation
matrix and U is upper triangular. The initial factor U is then PU (and we
henceforth disregard the fact that U is permuted upper triangular). This

decomposition requires the expected n3/3 operations of Gaussian elimination.
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The updating is accomplished by deleting the kth row of B and inserting
the new row ¢ at the bottom and moving rows k+l,...,n up to k,...,n-1. This
(in fact, permuted) matrix is B'. By deleting row k of L, moving rows k+l,...,n
up to kK,...,n=1, and adding cU as the final row we have L = B'U where L is lower
Hessenberg (and lower triangular in its first (k~1)x(k-1) minor). To obtain
our final factorization, we need only reduce the super diagonal elements of L
to zero using the standard interchange and elimination operations of the
Gaussian process. These same operations are performed simultaneously to U,
yielding the factorization L' = B'U', where L' 1is lower triangular.

The number of operations required for this process is approximately
n2 + (n-k)n + (n—k)2/2 = 5n2/2 - 2nk + k2/2. Again if we assume that k is
equally likely among the values 1,...,n then the number of expected operations
is about 5n2/3. If we include computation for the two solutions, By = 4 and
BTw = f, the total is lhn2/3 compared with n3/6, or a reduction by a factor of
28/n. These figures are only for large n and it is incorrect, as a closer
analysis shows, to surmise that small values of n favor the first algorithm.
(Recall that the two n2 terms for the solution of the systems were ignored
in the operation count for the first method.)

Another important consideration in the numerical implementation of the
descent algorithm is the ability to iteratively refine solutions. Either of
the decompositions presented can be used in the standard fashion to refine
solutions of By = d or Bw = f, given the residuals compuated in extra precision.

It may also be desirable to refine the final solution. Unfortunately,
this solution does not occur naturally as the solution to one of these
n x n systems. It does occur (as does any vertex of the polytope) as part

of the solution to an n+lxn+l order system.
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At a vertex the set M(x) of indices of maximum magnitude residual
elements has at least n+l components. If it has more than n+l (and, has

been previously commented, this is extremely rare in practice) there is a

subset of exactly n+l which "define" the vertex: i.e., the n+l corresponding

hyperplanes have only one point, the vertex, in common. We shall henceforth

assume M(x) has exactly n+l indices.
It must hold that the velue 8 = |r.(x)| is equal for all i & M(x). We

can then say (where Si = sgn(ri(x))bi)

o'l

sgn(ri(x))ai XxX-0=

for i € M(x). Although x actually enters in a non-linear fashion through
sgn(ri(x)) we may assume that if the initial value of x is sufficiently ac-
curate ri(x) does not change sign during the refinement.

Select some index k € M(x) and solve the transposed linear sysﬁem to
represent sgn(rk(x)) e, as a linear combination of SSn(ri(X))ai, i e M(x)

~ k. i.e.,

sgn(r. (x)) a, = T y. sgn(r.(x)) a,,
k Ko ieM(x)-x * 1 i
We then have
0 +b,_ = sgn(r, (x))ax = T y. sgn(r.(x)) a.x
k k k ieM(x )~k i i i
= T y.(6+b)=06 Z ooyt z ¥;b,
ieM(x)~k ieM(x)~k ieM(x)~k * %
=085 +T
where S = L y; and T = I yisi. As 8 result O = (Gk - T)/(S - 1). (Notice
ieM(x)~k ieM(x)~k

S > 1 as was shown in the previous section.) To refine the solution, let

Abi =b; - sgn(ri(x))ai x +0, ieMkx),
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for o given x and 0. Then let
40 = (db, - AT)/(5-1)
(where AT = ¢ vy, Aﬁj) and solve the nxn linear system
ieM(x)~k

sgn(ri(x))ai Ax = Abi + A6.

Finally x and € are replaced by x - Ax and 6 - Ax, respectively, and the
iteration proceeds until the changes in x and 0 are sufficiently small.

The calculation of AEi and A8 are necessarily done in extra precision.
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D.  RBESULTL OF NUMERICAL EXPERIENCE

The descent method presented here was programmed in FORTRAN and subjected
to a series of tests. The principle subroutine determined the descent step
parameter A and monitored the elements of maximum residusl magnitude. Addition-
al subroutine modules implemented the notions of Section 4 for the initial de-
cbmposition, updating, and solving of regular and transposed systems.

For comparison purposes the same tests were performed using the ascent
algorithm of Bartels and Golub [4] implemented in FORTRAN by Shryer [7]. 'The
form of the test matrices is due to Bartels and Golub [2] and has the elements
of the matrix A as well as the right hand side b selected randomly as the
product Ne*v where n is uniformly distributed on [0,1] and v has the value
18_1, 18—2, 18-3, iB_h with equal probability. The values of n were 4, 9, 1L,

vy 39, and m 10, 20, ..., TO with the restriction that m > n. The descent
algorithm (although with a capability for any initial estimate.of x) used
x = 0 as the initial estimate. The Bartels-Golub algorithm determines its
own initial estimate. .

Storage required for the descent algorithm is about 3n2/2 + 3n + 2m in
addition to that required for A, x, and b. In the Schryer implementation of
the Bartels and Golub algorithm mn + n2 + 6n + m locations are required.

Twenty tests were run for each pair of values of m and n. Each problem
was solved correctly and with comparable accuracy by the two methods. Timings
are summarized in the table and graphs (values are avefage CPU times on the
CDC T600 at the National Center for Atmospheric Research).

In Figure 1, the timings for the descent algorithm are displayed first,
the ascent algorithm second. Notice that with the exception of the 20x19 and

30x19 entries, all timings are higher for the ascent method. The ascent
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method immediately determines the solution to n+l x n order problems, the
descent algorithm does not.

Figure 2 shows the dependency of the timings onm for n = 4. Both the
algorithms display the expected linear behavior indicating that whether the
steps are of the ascent or descent type, the number of steps is proportional
to m. The rate of growth of the ascent timings appears to be about 1.4 of the
descent timings.

Figure 3 shows the dependence on m for m = 60. The vualues have been
scaled by l/n2 to feature the growth. The ascent algorithm performs O(nj)
computations at each of O(m) steps for a total of O(mn3). Figure 3 suggests
this. Alternatively the descent algorithm performs an initial decomposition
requiring O(n3) operations, then subsequent steps (0(m) in number) require
O(n2) operations. Thus, we expect a total of O(n3) + O(mn2) which Figure 3
seems to display.

A version of the ascent algorithm based on the Stiefel method but em-
ploying the O(n2) updating technique of Section L4 was also programméd and
its performance was in general superior to the Bartels-Golub algorithm but

inferior to the descent method.
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Figure 1

N 10 20 30 Lo 50 60
L 2.0 3.2 L5 5.2 7.0 T.6
3.6 5.3 7.2 8.9 10.5 11.6
6.7 12.7 16.0 20.2 24,0 26.4
9 8.9 19.7 28.1 33.2 43.1 48.6
L 29.1 38.8 47.5 55.8 61.9
1 40.9 72.1 92.5 109.6 122.3
1.6 72.1 88.4 101.5 116.8
19 38.7 129.6 177.9 204 .7 263.3
ol 118.1 1h1.7 167.0 186.0
171.3 302.1 346.0 412.6
o 126.2 205.0 256.5 289.3
9 100.0 400.6 586.5 735.7
L 287.1 336.6 431.0
3 499.8 835.5 113k4.9

A comparison of average timings for problems

with various values of m and n.

(First

figure in box is the descent algorithm timing,
second is Bartels-Golub-Schryer algorithm).
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6. ADDITION OF LINEAR EQUALITY AND INEQUALITY CONSTRAINTS

The descent method (or any method) easily admits the addition of linear
equality constraints. If the problem were to minimize |[Ax~b[| such that
Fx = d where E is kxn (k < u) and 4 is a k vector, then a transformation of
coordinates maps this into a standard problem with n-k variables. To see this,
factor E into the product of LU where L is kxn lower triangular and U is nxn.
Let us assume the equality constraints are independent, in which case U is
non-singular. (Obvious choices for U are orthogonal or permuted upper tri-
angular matrices.) Letting y = Ux we see Ly = d@ determines the first k com-
ponents of y. Call these components yl and the unknown remaining n-k-vector
'U = a, for the rows of A')

i i

and blocking A' into [AiAé] with k and n-k columns, respectively, we have

Yo Letting A' = au~t (i.e., solving the systems a

now Ax = A'y = Aiyl + Aéye. But Aiyl is known and we are left with determin- .
y
ing y, vhich minimizes ]]Aéy2 - (v - Aiyl)ll, then finally letting x = U l[y;].

For the addition of inequality constraints the problem has the form

Minimize |]|Ax - b]]|

So that Gx >'n.

Geometrically, the polytope defined by the problem without the inequality

constraints has now been truncated by vertical cuts. Given an "initial

feasible vector" (i.e., an initial vector satisfying Gx > h) the descent

occurs as before until the descent step would leave the constrained region.

At that point (where Gx and h agree in one or more components) constraints

enter into the determination of the direction of descent. (Essentially we

descend maintaining those component agreements through the descent.) As .

before a vertex is eventually reached and a modification of the method of

Section 3 yields a vertex to vertex descent.
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